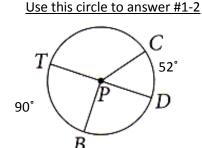
Formulas:

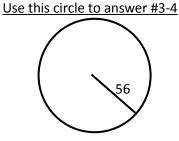

Circle Circumference: $C = 2 \cdot \pi \cdot r$

Circle Area: $A = \pi \cdot r^2$

Arc length = $\frac{\angle}{360} \cdot 2 \cdot \pi \cdot r$

Sector area = $\frac{\angle}{360} \cdot \pi \cdot r^2$

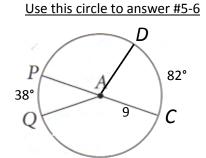
1. What is the degree measure of TC?



2. What is the degree measure of CDT?

ANSWER: _____

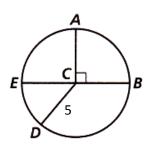
ANSWER: _____


3. What is the Circumference of this circle?

4. What is the Area of this circle?

ANSWER: $____\pi$

5. What is the arc length of PQC?


Use this circle to answer #7-8

6. What is the arc length of PD ?

ANSWER: $____$ π

ANSWER: _____π

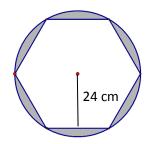
7. What is the area of sector AB?

8. What is the area of sector BDA?

ANSWER: _____π

ANSWER: _____π

9.	AFE is an example of a	
10.	CB is an example of a	A C E
11.	AEF is an example of a	
12.	AE is an example of a	
13.	FA is an example of a	


14. The Pistons logo above has a Circumference of 24 π . What is the radius of the logo?

Answer: _____

15.) What is the Area of the Pistons logo?

Answer: _____

BONUS: A regular Hexagon is inscribed in a Circle. Find the **shaded region**, given the apothem of 24 cm. SHOW STEPS and WORK VERY CLEARLY!

