Unit 1 Segment Addition Worksheet

Segment Addition Postulate If B is between A and C, then AB + BC = AC. If AB + BC = AC, then B is between A and C.

Write the **Segment Addition Postulate** for each problem. Also use **Segment Addition Postulate** to solve the following problems.

1. If AB = 27 and BC = 13, then find the length of AC.

AC=____

2. If TD = 32 and YD = 51, then find the length of YT.

•		 	
Y	T		D

YT=

3. If RG = 7x + 3, GQ = 3x + 13, and RQ = 56, then find the value for x, RQ, and GQ.

x=

RQ=

GQ=____

4. If AB = x + 4, BC = 2x - 10, and AC = 2x + 1, then find the value for x, AB, BC and AC.

x=____

AB=____

BC=____

AC=____

5. If AT = 6x - 2, TL = 4x - 12, and AL = 36, then find the value for x, AT, and TL.

x=____

AT=____

TL=____

6. If RE = 4x + 7, ET = 2(3x - 4), and RT = 43, then find the value for x, RE, and ET.

X=____

RE=____

ET=____

Suppose \overline{RS} is congruent to \overline{MN} . For each of the set of lengths, solve for x, and find the length of each segment.

1.
$$RS = 3x + 17$$
, $MN = 7x - 15$

2.
$$RS = x + 10$$
, $MN = 2x + 4$

3.
$$RS = 3x - 2$$
, $MN = x + 6$

3.
$$RS = 3x - 2$$
, $MN = x + 6$ 4. $RS = 5x - 10$, $MN = 2x + 20$

Suppose \overline{AB} is congruent to \overline{BC} . Solve for x, and find the length of \overline{AB} , \overline{BC} and \overline{AC} .

5.
$$\begin{array}{c|c} 2x-8 & x+17 \\ \hline A & B & C \end{array}$$

6.
$$A = \begin{bmatrix} 7x-6 & 12-2x \\ B & C \end{bmatrix}$$

$$\qquad \qquad 5(2x+2) - \cdots -$$

8.
$$A = A = A$$

Suppose that PR = 47. Solve for x and find the length of segments PQ and QR.

10.
$$P$$
 Q R

11.
$$\underbrace{\hspace{1cm}}_{P}$$
 $\underbrace{\hspace{1cm}}_{Q}$ $\underbrace{\hspace{1cm}}_{R}$ $X = \underline{\hspace{1cm}}_{Q}$

12.
$$\frac{\frac{5}{2}x+11}{P}$$
 $\frac{\frac{5}{2}x+11}{Q}$ $X =$