7-6

Conic Sections

You can easily determine the type of conic section represented by an equation of the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ when B = 0 by looking at A and C.

Conic Section	Relationship of A and C
parabola	A = 0 or $C = 0$, but not both.
circle	A = C
ellipse	A and C have the same sign and $A \neq C$.
hyperbola	A and C have opposite signs.

Equation of a Conic Section

The equation of a conic section can be written in the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, where A, B, and C are not all zero.

You can identify the conic section that is represented by a given equation by writing the equation in one of the standard forms you have learned.

Conic Section	Standard Form of Equation
parabola	$y = a(x - h)^2 + k$ or $x = a(y - k)^2 + h$
circle	$(x-h)^2 + (y-k)^2 = r^2$
ellipse	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \text{or} \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$ $a \neq b$
hyperbola	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{or} \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ or $xy = c$, when $c \neq 0$